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The dynamics of thermocapillary flows in differentially heated cylindrical liquid
bridges is investigated numerically using a mixed finite volume/pseudo-spectral
method to solve the Navier–Stokes equations in the Boussinesq approximation. For
large Prandtl numbers (Pr = 4 and 7) and sufficiently high Reynolds numbers, the
axisymmetric basic flow is unstable to three-dimensional hydrothermal waves. Finite-
amplitude azimuthally standing waves are found to decay to travelling waves. Close
to the critical Reynolds number, the former may persist for long times. Representative
results are explained by computing the coefficients in the Ginzburg–Landau equa-
tions for the nonlinear evolution of these waves for a specific set of parameters. We
investigate the nonlinear phenomena characteristic of standing and pure travelling
waves, including azimuthal mean flow and time-dependent convective heat transport.
For Pr � 1 the first transition from the two-dimensional basic flow to the three-
dimensional stationary flow is inertial in nature. Particular attention is paid to the
secondary transition leading to oscillatory three-dimensional flow, and this mechanism
is likewise independent of Pr. The spatial and temporal structure of the perturbation
flow is analysed in detail and an instability mechanism is proposed based on energy
balance calculations and the vorticity distribution.

1. Introduction
Surface tension gradients arise in many physical systems and technical applications

in which two immiscible fluids have a common interface. The tangential surface
stresses due to the thermocapillary effect can lead to a significant fluid motion
commonly called Marangoni convection (see e.g. Kenning 1968 for examples). The
relative importance of thermocapillary flows to buoyancy-driven flows which arise
simultaneously in crystal growth from a melt was first pointed out by Chang &
Wilcox (1975) for the float-zone method (Bohm, Lüdge & Schröder 1994). Today it
is well known that the axial micro-segregation (small-scale variations of the concen-
tration) in crystals grown by the float-zone method is mainly caused by oscillatory
thermocapillary melt flow.

Since the mid-seventies many experiments on a number of numerical investigations
of simple model float-zones have been carried out. In these systems a model liquid
is held between two coaxial circular disks, which are kept at different temperatures.
This configuration, termed a half-zone, is aimed at simulating the upper or lower
half of the full liquid zone in the floating-zone crystal-growth process. Owing to the
difficulties in measuring the bulk flows in opaque liquids, most of the experiments
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used transparent fluids, such as silicone oil, with Prandtl numbers Pr > 1, much larger
than those of liquid metals or semiconductors. Above a critical temperature difference
∆T along the fluid’s free surface, or an appropriately defined critical Reynolds
number Re ∝ ∆T , a transition occurs for high-Prandtl-number fluids directly from
the axisymmetric, toroidal, stationary flow to a three-dimensional time-dependent flow
(Schwabe & Scharmann 1979; Chun & Wuest 1979). Preisser, Schwabe & Scharmann
(1983) measured velocity and temperature profiles and found the relation m ≈ 2.2/Γ
between the azimuthal wavenumber m of the supercritical flow and the aspect ratio
Γ = d/R of the liquid bridge, where d and R denote the height and radius, respectively.
In the oscillatory regime they observed waves travelling in the azimuthal direction.
The parameter study by Velten, Schwabe & Scharmann (1991) confirmed the relation
found by Preisser et al. (1983) and, in addition, provided extensive data on the critical
Reynolds numbers and the oscillation frequencies at and above the critical threshold
for fluids with Prandtl numbers 1, 7, and 49. Routes into chaos were studied by Frank
& Schwabe (1997) for fluids with Pr = 7, 49 and 65.

A scaling law for the oscillation frequency in large-Prandtl-number fluids (Pr > 8),
deduced from experiments on the ground and under microgravity, was proposed by
Carotenuto et al. (1998). An overview on Marangoni flows in crystal growth melts
has been given by Schwabe (1988).

One of the first three-dimensional time-dependent simulations of flows in half-zones
was carried out by Rupp, Müller & Neumann (1989). For small Prandtl numbers of
O(10−2) they found that the flow is already three-dimensional below the temperature
difference for which it becomes time-dependent. Although using a rather coarse grid,
their values for the critical Reynolds numbers for Pr < 1 were in order-of-magnitude
agreement with estimates from experiments.

Numerical simulations for the same geometry were performed by Savino & Monti
(1996) for fluids with Pr = 30 and Pr = 74. They investigated the influence of a
linear time-variation of the Reynolds number on the flow, as used in microgravity
experiments, and compared their simulations with experiments done onboard of
Maxus 1b (Monti et al. 1994) and Spacelab D2 (Monti et al. 1995). Moreover, a
description of the flow structure for the observed standing and travelling waves with
azimuthal wavenumber m = 1 was given.

Recently, Levenstam & Amberg (1995) simulated the flow in a half-zone for Pr =
0.01 and Pr = 0. They found a transition from the axisymmetric basic flow to a three-
dimensional stationary flow and, at higher Reynolds numbers, a secondary transition
to three-dimensional time-dependent flow. Since the critical Reynolds numbers and
the flow patterns did not differ much for both Pr = 0.01 and Pr = 0, it was concluded
that the instabilities at low non-zero Prandtl numbers are hydrodynamic in nature.

Concerning the type of the first instability, their results are in agreement with the
linear stability analysis of Wanschura et al. (1995), who established the dependence
of the critical Reynolds number on the Prandtl number and identified the instability
mechanisms for high and low Pr. It was clarified that the hydrothermal wave instability
studied experimentally in fluids with Pr > 1 does not allow conclusions to be drawn
for the small-Prandtl-number melts in crystal-growth processes.

The combined effect of buoyancy and thermocapillary forces on the stability of
flows in half-zones was investigated by Wanschura, Kuhlmann & Rath (1997). For
Pr = 4 they found that buoyant forces essentially act to stabilize, the effect being even
stronger when the zone is heated from below. Stabilization of the stationary base
flow by heating model zones from below rather than from above was also reported
by Velten et al. (1991).
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Despite numerous recent numerical simulations of the full Navier–Stokes equations
for the present problem, the results obtained have not been properly placed in the
context of bifurcation theory. The present paper thus aims at a thorough analysis of
the nonlinear three-dimensional flow in order to elucidate the fundamental properties
and mechanisms beyond the first symmetry-breaking instabilities in flows for both
small- and large-Prandtl-number liquid bridges. The composition of the supercritical
flow is investigated in terms of the amplitudes of the critical mode and its higher
spatial harmonics. Characteristic properties of standing and travelling waves in large-
Prandtl-number fluids are identified and related to the amplitude equations for the
interacting waves. Finally, the time-dependent flow in low-Prandtl-number liquid
bridges above the secondary instability is analysed in detail and the mechanism of
the instability is discussed.

The paper is arranged as follows. In § 2 the problem is formulated in terms of
the basic equations and the boundary conditions. Section 3 treats the mathematical
and numerical methods used to solve the governing equations. It also adresses the
code validation and error estimation. In § 4 we present the simulation results the
implications of which are discussed in § 5.

2. Problem formulation
We consider a liquid bridge supported by surface tension and bounded by two

rigid coaxial circular walls of radius R a distance d apart. The liquid is heated from
above by keeping the top and bottom walls at constant temperatures T0 + ∆T/2, and
T0−∆T/2, respectively. T0 is the mean temperature and the aspect ratio is defined as
Γ = d/R. Using the scales d, ν/d, ρ0ν

2/d2, ∆T and d2/ν for length, velocity, pressure,
temperature, and time, where ν and ρ0 denote the kinematic viscosity and the density
of the fluid, the transport equations for momentum and heat in the Boussinesq
approximation are

(∂t + u · ∇) u = −∇p+ ∇2u+ GrT ez, (2.1)

(∂t + u · ∇)T =
1

Pr
∇2T , (2.2)

∇ · u = 0. (2.3)

Here, u = (u, v, w)T, p, and T denote the dimensionless velocity, pressure, and tem-
perature fields, and ez is the unit vector in the axial direction. The dimensionless
parameters are the Prandtl and Grashof numbers, defined as

Pr =
ν

κ
, Gr =

β ∆Tgd3

ν2
,

where κ is the thermal diffusivity, g the gravitational acceleration, and β = −ρ−1
0

(∂ρ/∂T )p the thermal expansion coefficient at constant pressure.
On the top and bottom boundaries no-slip and no-penetration conditions are used

and constant temperatures are imposed,

u = 0, T = ± 1
2

on z = ± 1
2
.

On the free surface a linear variation of the surface tension with temperature is
assumed, i.e. σ(T ) = σ0 − γ (T −T0) in dimensional units. Moreover, we consider the
limit of asymptotically large mean surface tension σ0 and a liquid volume of π/Γ 2. In
this limit the liquid bridge takes an upright cylindrical shape which is not influenced
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by the static and dynamic pressure and the tangential free-surface stress balance reads

S · n+ Re (I − nn) · ∇T = 0,

where S = 1
2
(∇u+ (∇u)T) is the stress tensor, I the 3× 3 identity, and n the outward

unit normal vector. The normalized strength of the driving shear stress is given by
the thermocapillary Reynolds number

Re =
γ ∆Td

ρ0ν2
.

Heat transfer at the liquid–gas interface is modelled by Newton’s law

∂rT + Bi (T − Ta) = 0,

where, for simplicity, the temperature Ta = z of the ambient gas is assumed to vary
linearly with z. The Biot number is defined as

Bi =
hd

λ
,

with h denoting the heat-transfer coefficient and λ the thermal conductivity of the
fluid.

On the cylinder’s axis, the relations ∂ϕu = 0 and ∂ϕT = 0 are used to simplify the
volume equation for u at r = 0.

3. Numerical techniques and code validation
A finite-volume method on a non-homogeneous staggered grid in the (r, z)-plane

combined with a pseudo-spectral approach in the azimuthal direction is used to solve
the discretized equations in primitive variables. The standard arrangement of the
unknowns is used (u on the r = const. volume boundaries, w on the z = const.
volume boundaries and v, T and p at the cell centre). Directional gradients of the
variables on the boundaries of the two-dimensional control volumes are computed
by second-order central differences. On a non-homogeneous grid the accuracy of the
central difference discretization formally reduces to first order, but using a moderate
grid stretching factor of ≈ 0.95–1.05 for neighbouring control volumes, the leading
term of the error is comparable in size with the one from the second-order-accurate
discretization on a homogeneous grid. For unit aspect ratio the typical resolution
used in the (r, z)-plane was Nr×Nz = 30× 30 with a cell size reduction for successive
control volumes of 0.96 in the radial direction (towards r = Γ−1) and 0.93 in the axial
direction (symmetric from z = 0 towards z = ±0.5).

Since the flow is 2π-periodic in the azimuthal direction, spectral methods are well
suited to compute azimuthal derivatives and amplitudes of components with selected
azimuthal wavenumbers. Further, for O(1) aspect ratios Γ , the weakly nonlinear
three-dimensional flow involves only Fourier modes with low azimuthal harmonics of
the fundamental wavenumbers m. Consequently, the flow structure can be resolved
to sufficient accuracy with a small number of azimuthal planes, even if higher spatial
harmonics are present. Within the pseudo-spectral method employed, the azimuthal
derivatives are computed in the Fourier space (Fourier collocation derivatives, Canuto
et al. 1988). Since no special means have been used to filter out aliasing errors, Nϕ has
to be chosen large enough such that these errors do not change the flow properties.
For azimuthal wavenumbers up to m = 6, Nϕ = 14 azimuthal planes resolved the
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Re 1000 3000 5000 7000 Reference

Pr = 0.02 8.87 7.18 6.31 5.71 Wanschura
8.93 7.18 6.31 5.65 This work

Pr = 4 2.33 2.05 1.95 1.88 Wanschura
2.35 2.09 1.97 1.86 This work

Table 1. Stream-function minimum −minψ × 103/Re for Pr = 0.02 and Pr = 4 (Bi = Gr = 0,
Γ = 1). The results by Wanschura (1998, personal communication) were computed in the
stream-function–vorticity formulation using a finite-difference discretization for the z-direction
(Nz = 120) and a Chebychev-collocation method for the r-direction (Nr = 30 modes), while the
results for this work were computed on a grid with Nr ×Nz = 30× 30 volumes.

near-threshold structure to sufficient accuracy, while for the large-Reynolds-number
simulations up to Nϕ = 26 was used.

The time stepping is done using an operator-splitting method described in Bristeau,
Glowinski & Periaux (1987) (Θ-scheme). One full step consists of three substeps,
where in the first and in the last substep the nonlinear terms are treated explicitly,
while in the second they are treated fully implicitly. The viscous terms are treated
partially implicitly in all substeps. For appropriately chosen substep size and weighting
factors of the implicit terms, the scheme can be shown to be second-order accurate
in time.

The nonlinear set of equations from the second substep is solved using New-
ton’s iterative method on the linearized system. All linear systems are solved by
Stone’s strongly implicit procedure (SIP, Stone 1968). Here we have adapted the two-
dimensional variant to the block matrix structure resulting from the pseudo-spectral
treatment of the azimuthal dependence.

The two- and three-dimensional versions of the code have been validated by
comparison with available data for the range of parameters investigated in this work.
If not mentioned otherwise, results from linear stability analyses were provided by
Wanschura (1998, personal communication) using the method described in Wanschura
et al. (1995). The following examples are computations for Γ = 1, Bi = Gr = 0.

To assess the accuracy of the (r, z)-discretization, the stream-function minimum of
stationary two-dimensional flows is given for Pr = 0.02 and Pr = 4 for a range of
Reynolds numbers. The results are in excellent agreement with those provided by
Wanschura (table 1).

To assess the accuracy of the ϕ-discretization, the growth rate σ and the cor-
responding oscillation frequency ω of small-amplitude three-dimensional oscillatory
perturbations with the critical azimuthal wavenumber m = mc were determined for Re
near Rec, where Rec and mc are the values predicted by the linear stability analysis.
To this end, the oscillatory flow was initiated by adding a 2π-periodic (m = mc)
perturbation Tp of the temperature field,

Tp(r, z, ϕ) = T̂ rΓ cos πz sinmϕ with T̂ = 10−3, (3.1)

up = 0, (3.2)

to the stationary two-dimensional flow. The amplitude of the deviation from the two-
dimensional flow either decreased (Re < Rec) or increased (Re > Rec) exponentially in
time. Rec and ωc were then found by interpolation of σ and ω near the critical point.
For the 30× 30× 14 mesh used we get Rec = 1030 and ωc = 28.7, which deviate only
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Figure 1. (a) Growth rate σ and (b) frequency ω, for Pr = 4 and Γ = 1 as function of Re:
�, simulation; ×, linear stability analysis. Solid line, linear fit to �.

v0 v2 v4 v6 ω

Nϕ = 14 1.48 4.43 1.06 0.289 32.9
Nϕ = 22 1.46 4.39 1.00 0.231 33.1
Difference [%] 1.4 1.0 6.0 25.0 0.6

Table 2. Amplitudes of the Fourier modes of the azimuthal velocity vm at (r, z) = (0.56, 0.03)
(m = 0, 2, 4, 6) and oscillation frequency for two different azimuthal grids. In both cases Pr = 4,
Bi = Gr = 0, Γ = 1 and Re = 1600; the critical wavenumber is mc = 2 (Nr ×Nz = 30× 30).

by 2% and 3%, respectively, from the values obtained by the linear stability analysis
(ReLSA

c = 1047 and ωLSA
c = 27.9). The results are presented in figure 1. Starting the

simulations from the two-dimensional stationary flow field for Re > Rec near Rec

with small-amplitude random perturbations, the identical wavenumber m is triggered.
An estimate of the aliasing errors was obtained by comparing the amplitudes of the

Fourier components and the oscillation frequency computed with varying azimuthal
resolution. For slightly supercritical flow (Re ≈ 1.05 Rec) the amplitudes of the basic
mode and its higher harmonics as well as the frequencies for both grids are identical.
At larger driving forces, Re ≈ 1.50 Rec, deviations of order 1% with respect to the
total amplitude and also a small shift of the frequency occur. The relative error of
single Fourier components, however, may be significantly larger, without influencing
the overall properties, e.g. ω (table 2).

The dynamic behaviour depends more severely on the grid resolution if Pr � 1.
An interpolation of the growth rate to σ = 0 still yields the correct (i.e. as given by
the linear stability analysis) stability limit, but the values of the exponential growth
rate are underestimated by the simulations. On sufficiently fine grids the growth
rate reflects the O(N−2) accuracy of the discretization (figure 2a), but the linear
stability analysis result σ = 7.1 is only approximately obtained by extrapolating to
infinitesimally small grid spacing, which gives σ∞ = 7.2. This is in contrast to the
accuracy of the two-dimensional flow field, which on a 30×30 mesh is nearly identical
with the reference values computed on a 70× 70 mesh (figure 2b). Since values of the
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Figure 2. (a) Growth rate σ for the small-amplitude three-dimensional flow (Pr = 0.02, Re = 2400)
as a function of grid spacing (N = Nr = Nz). (b) Axial velocity w(r, z = 0) on a 30× 30 mesh (4)
and 70× 70 mesh (×).

growth rate for small and zero Prandtl numbers will not be required for the results
presented here, all computations were done on a 30× 30 mesh.

The adequate representation of the three-dimensional oscillatory flow of low-
Prandtl-number fluids demands a high azimuthal resolution. This is due to the larger
number of spatial harmonics that must be resolved at high Reynolds numbers and
the steep azimuthal velocity gradients that are one source of energy for the oscillatory
perturbation (see § 4.3.3). Using Nϕ = 26 planes, we obtain for Pr = 0.01 and Re =
6500 an oscillation frequency 5% above the value ω = 82 computed by Levenstam
(1994) and reproduce for Pr = 0 the critical Reynolds number Rec = 5962 for the
onset of oscillations given by Levenstam & Amberg (1995). However, withNϕ = 34 for
Pr = 0 a positive growth rate of the oscillation amplitude had been found 5% below
that value of Rec. Since the structure of the flow remains qualitatively unchanged and
the available CPU time did not allow a higher resolution, all computations reported
in this paper were done with Nϕ = 26 azimuthal planes. In this case the simulation of
one unit of the dimensionless time requires approximately one month of CPU time
on a IBM 590 workstation (POWER2 processor at 66 MHz).

4. Results
The hydrothermal wave instability at large Prandtl numbers is considered up

to Pr 6 7. High-accuracy calculations for larger Prandtl numbers would require
increasingly finer grids to resolve the thermal boundary layers, resulting in excessive
CPU times. Although numerous experiments were done with fluids having Pr > 10,
some of the most reliable data have been obtained for Pr = 7 by Velten et al. (1991).

4.1. Large Prandtl numbers: Pr = 4

For Pr = 4 the axisymmetric basic flow becomes unstable to a pair of hydrothermal
waves, if Re > Rec = 1030 (§ 3). At the threshold two solutions, a clockwise and a
counter-clockwise travelling wave (TW), bifurcate out of the two-dimensional flow.
Within the linear theory, any superposition of both waves with arbitrary amplitudes is
possible. To investigate the asymptotic states above threshold, nonlinear calculations
for defined initial states were carried out. Throughout § 4.1 we consider Γ = 1 and
Bi = Gr = 0.
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Figure 3. Logarithm of the azimuthal velocity as a function of time for Pr = 4 and Re = 1200.
(a) Evolution of the standing wave; (r, z, ϕ) = (0.95, 0, 0). (b) Decay of the standing wave into a
travelling wave; (r, z, ϕ) = (0.95, 0, π/4).

4.1.1. Stability of standing waves

Standing hydrothermal waves (SWs) of the critical azimuthal wavenumber m =
mc = 2 were generated by adding at t = 0 the perturbation (3.1) to the two-
dimensional stationary flow for the given supercritical Reynolds number. Since the
initial perturbation in T does not break the azimuthal reflection symmetry, both the
clockwise and the counter-clockwise waves are equally excited and their amplitudes
increase at the same rate. Initially, the amplitudes grow exponentially (figure 3a,
t = 0–2.5). At a later stage the nonlinear coupling reduces the growth rate (t =
2.5–4.5), before the wave amplitudes finally saturate (t ≈ 4.5). The location of the
SW nodes is arbitrary in principle but in our case it is prescribed by the nodes of the
initial temperature perturbation.

Further integration in time, however, shows that standing waves are unstable. At
the nodes of the standing wave’s azimuthal velocity field the oscillation amplitude
can, rather early, be seen to increase exponentially (figure 3b). After a new level of
saturation is reached, the flow essentially consists of a travelling wave. Away from
the nodes, where the SW has a finite oscillation amplitude, the decay is more difficult
to notice.

The scenario is the same for all investigated values of ε in the range 0.06–0.54,
where the distance from the critical point is defined as

ε =
Re− Rec

Rec

.

4.1.2. Structure of the hydrothermal waves

Characteristic isolines of the azimuthal velocity and the temperature field are
shown in figure 4(a, b) for a standing wave and in figure 4(c, d) for a travelling wave.
The axisymmetric part of the corresponding variable, (1/2π)

∫
x(r, z, ϕ)dϕ, has been

subtracted to emphasize the three-dimensional structure.†
The full spectral decompositions of the flow for a SW and for a TW are shown

in figure 5. The frequency n is given in terms of the fundamental mode’s oscillation
frequency ω ≡ ωmc

(ε), i.e. |n| = 2 corresponds to Fourier modes oscillating at 2ωmc
(ε).

† We note that this is not the same as subtracting the two-dimensional base flow, since
(1/2π)

∫
xdϕ includes the axisymmetric contributions generated by nonlinear mode interactions.

Therefore, the figures do not show the complete perturbations but only their three-dimensional part.
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Figure 4. (a) Azimuthal velocity and (b) temperature isolines of the standing wave fields, and (c)
azimuthal velocity and (d) temperature isolines of the clockwise travelling wave fields at midplane,
z = 0, for Pr = 4, Re = 1200. The axisymmetric part has been subtracted and dashed lines
correspond to negative values.

We denote by n > 0 components propagating clockwise (in the negative ϕ-direction),
and by n < 0 components propagating counter-clockwise (in the positive ϕ-direction).
In the following, we shall refer to the flow’s Fourier components by unm, vnm, etc.,
where the subscript denotes the azimuthal wavenumber and superscripts specify the
temporal harmonics.

A standing wave’s spectrum is symmetric with respect to n = 0. For the travelling
wave the flow consists of a mode with mc (the fundamental) and its spatial harmonics
with the same phase velocity ωm/m = ω/mc = const.

For the asymptotic states of pure TWs, the amplitudes of the azimuthal velocity
of the critical mode and its higher spatial harmonics, vm, m = 2, 4 and 6, are very
well represented by the generic scaling for supercritical bifurcations and quadratic
nonlinearity,

vm = v̂mε
m/2mc , (4.1)

if ε is small. Figure 6 shows the amplitudes vm (m = 2, 4, 6) at (r, z) = (0.5, 0) of the
azimuthal velocity of the travelling wave as a function of ε. They are taken at the
approximate location where the v2 component attains its maximum amplitude in the
bulk, but other (r, z) locations or other variables (u, w or T ) may be chosen as well.
For comparison, lines for v̂mε

pm using the coefficients v̂m and pm given in table 3 are
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Figure 5. Spectral decomposition of the azimuthal velocity at (r, z) = (0.94, 0) for Pr = 4, Re = 1400.
(a) Standing wave (t ≈ 2), ω = 33.7. (b) Travelling wave (t ≈ 9.25), ω = 31.6. The contribution to
(m, n) = (6, 4) indicates the magnitude of the aliasing error. It originates from the harmonic with
(m, n) = (8,−4).
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Figure 6. Amplitudes vm of the azimuthal velocity of the travelling wave at (r, z) = (0.5, 0) as a
function of ε for m = 2(×), 4(4), 6(�) (Pr = 4, Bi = Gr = 0, Γ = 1). Solid lines represent the
functional dependence vm = v̂mε

pm with the parameters given in table 3.

also shown. The coefficients were obtained using Rec = 1030 (§ 3) and the amplitudes
for Re = 1100 and Re = 1200.

4.1.3. Standing wave properties

For SWs, the coupling of the flow’s components T+1
mc

and T−1
mc

generates components

T±2
0 oscillating at 2ω (see figure 7, where mc = 2). Due to this component, the integral

Nusselt numbers on the top and bottom boundaries are not constant in time, but
oscillate at the same frequency, Nu = const. + C sin 2ωt. The Nusselt number, which
is a measure for the convective heat transport from the top (hot) boundary into the
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Pr = 0.02 Pr = 4 Pr = 7

m v̂m pm v̂m pm v̂m pm

2 47.41 0.53 6.56 0.50 16.05 0.46
4 21.70 0.98 2.23 0.99 6.04 0.95
6 11.78 1.51 0.93 1.45 3.53 1.46

Table 3. Coefficients for the functional dependence vm = v̂mε
pm . (See text for details.)
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Figure 7. Coupling of the two counter-propagating waves for Pr = 4 and Re = 1300. (a) Spectrum
of T at (r, z) = (0.37, 0.49) (normalized amplitudes, ω = 32.4). The axisymmetric component at
(m, n) = (0, 0) has been dropped. (b) Nusselt number on the top boundary during the decay of the
standing wave.

fluid, is defined by Nu = J/Jc − 1, where J =
∫
∂zT |z=1/2rdrdϕ and Jc = π/Γ 2. Jc is

the heat flux of the purely conductive state.
We evaluated the Nusselt number for the two-dimensional flow, the standing wave

regime (in this case the time-averaged value was taken), and the asymptotic state of
a travelling wave for different values of Re > Rec. The result is shown in figure 8(a).
The Nusselt numbers for all three solutions increase approximately linearly with ε and
their values for ε = 0 agree better than 1% (Nuc = 3.42±0.01). We find dNu/dε = 1.23,
1.09 and 0.94 for the two-dimensional, SW and TW flows, respectively. For a typical
scenario (two-dimensional → SW → TW) the Nusselt number is decreasing. The
asymptotic state of a pure TW has the smallest value of Nu. In figure 8(b) the
amplitude of the Nusselt number oscillations in the SW regime is plotted. In the
range of ε investigated, it is approximately 1% of the time-averaged value of Nu.

For a standing wave there exist azimuthal positions where oscillations of particular
Fourier components only can be detected. For any m the SW fields Tm have nodes
where the corresponding vm has anti-nodes, and vice versa. The harmonics of Tm are
oriented such that their anti-nodes fall onto the Tm anti-nodes, while the harmonics
of vm are oriented such that their nodes fall onto the vm nodes.
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Figure 8. Nusselt numbers for Pr = 4, Γ = 1. (a) ×, two-dimensional flow; �, standing wave (time
average); 4, travelling wave. (b) Amplitude of the oscillating Nusselt number in the SW regime.
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4.1.4. Travelling wave properties

A nonlinear property of TWs is a finite value of the integrated azimuthal flow,
defined as

Φ(t) =
1

2π

∫
v(r, z, ϕ, t) drdzdϕ =

∫ 1/Γ

0

dr

∫ 1/2

−1/2

dzv0
0(r, z, t). (4.2)

The self-interaction of an azimuthal velocity mode with m 6= 0 generates non-zero
stationary axisymmetric azimuthal velocity components. Time-dependence is kept in
(4.2) to account for transient flow phases. In the asymptotic limit of a pure travelling
wave Φ does not depend on time. In figure 9(a) the integrated azimuthal flow for the
asymptotic states of pure propagating waves (Pr = 4) is shown. It is proportional to
ε, as v2 ∝ √ε for the supercritical bifurcation (§ 4.1.5). For the present case we find

Φ = 1.04× ε+ O(ε2). (4.3)



Simulation of thermocapillary flows in liquid bridges 297

The mean flow is opposite to the direction of wave propagation. The net value of Φ
is the result of a major contribution opposite to the direction of wave propagation
(extending over most of the fluid volume) partially compensated by a reverse flow
near the cold corner (figure 9b).

Inspecting the convective terms one can easily show that the magnitude and the
direction of the mean flow depend on the relative phase shifts with respect to v of the
components u and w, which are functions of r and z. Due to symmetry, a standing
wave has no azimuthal mean flow.

The wave fronts ϕwf±m(r, z, t) of the clockwise (−) or counter-clockwise (+) travelling
wave component with wavenumber m are given by the condition that their phase
Φ±m(r, ϕ, z, t) = ±mϕ − ωmt + αm(r, z) be constant. We computed ϕwf±mc

by a Fourier
transform with respect to ϕ and t of the flow data from one period of oscillation.
The curvature of the wave fronts increases with increasing Reynolds number, but the
overall shape remains qualitatively unchanged. The phase variation of T along the
radial direction causes a large lag between the surface temperature extrema and those
in the bulk. This is characteristic for the hydrothermal waves described in Wanschura
et al. (1995), cf. their figure 18(b), and can also be seen from figure 4(d).

4.1.5. Frequency shift

Nonlinear mode interactions generally modify the oscillation frequencies (see § 4.1.6,
(4.8) and (4.10)). The frequency right after the generation of the SW perturbation
flow, when the three-dimensional amplitudes are still small, is denoted by ωi and was
used to determine ωc in § 3. At the stage when the SW amplitude is saturated, the
frequency is ωSW. For ε < 0.3, we find ωSW ≈ ωi. Finally, for the asymptotic TW we
find a third frequency, ωTW. Figure 10 shows that the critical frequencies (28.8, 28.9
and 28.9) extrapolated from ωi, ωSW and ωTW, respectively, are in agreement within
the estimated errors, but the travelling waves’ frequency increases with a slope weaker
by a factor of 1/2 than that of the standing waves. We find

ωi = 28.8 + 13.9× ε, (4.4)

ωSW = 28.9 + 14.3× ε, (4.5)

ωTW = 28.9 + 7.0× ε. (4.6)

4.1.6. Amplitude equations for hydrothermal waves

Amplitude equations have proven very useful for the description of the weakly
nonlinear behaviour (e.g. Newell, Passot & Lega 1993). For the slow time evolution
of the complex amplitudes A− = LeiαL , A+ = ReiαR of the fundamental modes of the
left- and right-travelling hydrothermal waves the following system of four coupled
equations can be derived (see the Appendix):

τ0L̇ = εL− gsL
3 − gcR

2L, (4.7)

τ0α̇L = c0ε− c2gsL
2 − c3gcR

2, (4.8)

τ0Ṙ = εR − gsR
3 − gcL

2R, (4.9)

τ0α̇R = c0ε− c2gsR
2 − c3gcL

2. (4.10)

For stable solutions gs must be positive (see e.g. Crawford & Knobloch 1991; Iooss
1987). With the scaling (L, R) 7→ (L, R)(gs)

1/2 the coefficient of the cubic self-interaction
becomes 1 and gc 7→ g̃c = gc/gs in the above equations. Considering the three cases
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τ0 g̃c c0 c2 c3

0.11 2.29 1.59 0.60 −0.27

Table 4. Coefficients in the complex Ginzburg–Landau equations
for Pr = 4, Γ = 1, Gr = 0, Bi = 0.
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Figure 10. Oscillation frequencies for Pr = 4, Bi = Gr = 0 and Γ = 1. ×, Initial standing wave ωi;
�, fully developed standing wave ωSW; 4, asymptotic travelling wave ωTW. The vertical line marks
Rec.

of small-amplitude exponential growth, saturated nonlinear standing waves (L = R),
and asymptotic travelling waves (e.g. L = 0, R 6= 0), it is easy to determine τ0, g̃c, and
cj (j = 0, 2, 3) by fitting the data from the simulations in the weakly nonlinear regime
to the appropriate expressions (Appendix). The results for Pr = 4, Γ = 1, Gr = 0,
and Bi = 0 are given in table 4. The sensitivity of the computed coefficient was tested
by excluding specific data sets from the fitting procedures. From the resulting scatter
the error in the coefficients was estimated to be ≈ ±10%.

Since g̃c > 1, the travelling waves are stable while standing waves are not. Consider-
ing an asymptotic (left-)travelling wave (L2 = ε, R = 0) and using the pair of complex
equations given in the Appendix it is easy to show that a small-amplitude counter-
propagating wave will decay exponentially ∝ exp(σft), where σf = (1 − g̃c) ε/τ0 < 0
with g̃c from table 4. To show the instability of a standing wave with amplitudes
R2 = L2 = ε/(1 + g̃c) for the above parameters, it is sufficient to consider small-
amplitude deviations (δL, δR) from (L, R), i.e. phase fluctuations need not be taken
into account. The analysis of the coupled amplitude equations for δL and δR yields
the growth rates

σ1,2 =

(±g̃c − 1

g̃c + 1

)
2ε

τ0

. (4.11)

Since g̃c > 1, there is one positive root σ1 with corresponding eigenvector (δL, δR)1 =
(1,−1) δ. Hence, initial amplitude differences will grow, leading to the decay of the
standing wave. The latter result is confirmed by inspecting the relevant interval in the
simulations. From figure 3(b) we find σ1 = 1.14 (ε ≈ 0.17) which compares favourably
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Figure 11. Oscillation frequencies ω of the perturbation flow (fully developed SW; �) and the eddy
turnover frequencies ωe (+) as a function of ε for Pr = 4, Γ = 1, Bi = Gr = 0. The dashed lines are
linear fits to the data.

with σ1 = 1.13 predicted by (4.11). Note that although the decay is critically slowed
down for ε→ 0, the SWs will decay for all 0 < ε� 1 for the parameters investigated.

4.1.7. Correlation between base state and perturbation flow

Carotenuto et al. (1998) have given an empirical correlation for the frequencies of
the measured hydrothermal waves. However, the derivation of their formula contains
certain ambiguities. A simple physical argument may be based on the fact that the
transport of small temperature perturbations in high-Prandtl-number circulating flows
is mainly due to advection. The surface temperature fields of the hydrothermal waves
in these flows have a spiral character (Muehlner et al. 1997) and the iso-surfaces of
the perturbation temperature may be imagined as being spirally wrapped around the
toroidal basic-state vortex core, m being the winding number. This behaviour becomes
more pronounced for higher Pr (Wanschura 1998, personal communication).

If advection were the sole process, the perturbation frequency would correspond
to a characteristic eddy turnover frequency ωe, which can be defined as ωe = 2π/Te,
where

Te =
π/Γ 2

maxz

{∫
S+

wdS+

}
is an estimate for the time it takes the (single) thermocapillary vortex to pump the
whole volume of the liquid bridge. Here, S+ denotes the area for which w > 0 at the
considered z-level.

The correlation of ω and ωe should only hold near the critical point, since nonlinear
interactions are influencing the frequency (§ 4.1.5). The comparison shown in figure 11
is better than expected. From the extrapolated values at Rec = 1030 we obtain
ωc ≈ 0.95ωe,c. In fact, larger deviations occur for Pr = 7. In this case the correlation
at the critical point is ωc ≈ 0.81ωe,c. Deviations are expected since the basic toroidal
vortex is not in rigid body rotation and different streamlines correspond to different
periods. Yet, an O(1) agreement of both frequencies is obtained for the Prandtl
numbers investigated here.
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Simulation
LSA Experiment

Γ = d/R Bd mc m m ε Type

0.5 0.282 5 ? 5 0.76 TW−
0.6 0.406 4 4 4 0.72 TW+

0.7 0.553 3 3 3 1.19 TW−
0.9 0.914 2 (3) ? 3 0.39 TW−
1.0 1.129 2 2 2 0.51 SW→TW−
1.1 1.366 2 2 2 0.28 TW+

1.3 1.907 2 ? 2 0.45 SW→TW+

Table 5. Mode types for Γ = 0.5–1.3, Pr = 7, heated from above. Experimental results are
taken from figure 14(a) of Velten et al. (1991). A question mark indicates that the wavenumber
could not be determined satisfactorily. Initial condition for all three-dimensional simulations was
the axisymmetric flow at the corresponding Reynolds number. Flow types are shown by SW for
standing and TW for travelling (+ clockwise, − counter-clockwise propagation) waves. Arrows
indicate a structural change. LSA denotes linear stability analysis.

4.2. Large Prandtl numbers: Pr = 7

To compare our simulations with the experiments of Velten et al. (1991), the three-
dimensional structure of the flow was studied for different values of the aspect ratio
Γ at supercritical driving (heated from above). The value used for the Biot number,
Bi = 6.4, was determined from temperature isolines given in Preisser et al. (1983)
(their figure 3) for Γ = 1.3 and was used for all computations. Buoyancy effects were
included using a finite Grashof number computed from the fluid properties given in
table 1 of Velten et al. (1991).

4.2.1. Azimuthal wavenumber selection

For a given aspect ratio the Bond number, Bd = Gr/Re, was kept constant
in order to account for the fact, that the temperature difference ∆T between top
and bottom was varied in the experiments. Table 5 lists the values used in the
simulations. For the three-dimensional simulations the axisymmetric flow at the
corresponding supercritical Reynolds number was used as initial condition. The
azimuthal wavenumbers of the flows that developed out of the numerical noise
are shown in table 5. With a single exception, these coincide with the azimuthal
wavenumbers mc for Rec predicted by the linear stability analysis and the azimuthal
wavenumbers m determined in the experiments, which, if available, are also given
in the table. For Γ = 0.9 the linear stability analysis predicts mc = 2, while in the
simulations at Re = 1500 m = 3 is found. This is not inconsistent, however, since for
this value of the Reynolds number the growth rate for m = 3 is larger than for m = 2,
σ3 = 4.69 > σ2 = 4.20. It can be concluded that the simulations correctly predict the
azimuthal wavenumber for given aspect ratio also in cases for which experimental
data are lacking.

From their experiments Preisser et al. (1983) derived the relation

mΓ = c, (4.12)

where c ≈ 2.2. A least-squares fit to our results implies c ≈ 2.4, in good agreement
with the former.

As for Pr = 4, no stable standing waves were found. In two runs SWs were found
at onset, but the asymptotic flow in all cases investigated was a pure TW. The waves
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Figure 12. Normalized azimuthal net flow Φ (—) and travelling wave fraction fTW (4) as a function
of time for Pr = 7, Re = 1500. The lateral size of the symbols approximately represents the period
τ used to evaluate the travelling wave fraction.

essentially exhibit the same features as those for Pr = 4 and Gr = 0 (§ 4.1), e.g. a
time-dependent Nusselt number in the SW regime and a non-zero azimuthal flow in
the case of TWs.

For Γ = 1 the asymptotic flow was investigated for a range of Reynolds numbers.
Up to Re = 1500 (ε = 0.51), the amplitudes vm, m = 2, 4 and 6, of pure travelling
waves approximately follow the scaling law (4.1) for supercritical bifurcations. The
coefficients given in table 3 were determined using ReLSA

c = 991 and the amplitudes
at Re = 1200 and 1300.

4.2.2. Mixed flow properties

In one of the cases investigated the decay of the standing wave into a travelling
wave was slow enough to study the azimuthal mean flow during the transient phase.
In figure 12 the normalized value Φ(t) and the travelling wave fraction fTW are plotted
during the decay of the standing wave. The fraction fTW is defined as

fTW =
(v+

2 )2 − (v−2 )2

(v+
2 )2 + (v−2 )2

,

where v+
2 and v−2 are the amplitudes of the azimuthal velocity at some fixed point (r, z)

of the clockwise and counter-clockwise propagating components of the critical mode.
While the absolute values of v+

2 and v−2 depend on the location (r, z) in the volume,
v+

2 /v
−
2 and hence fTW are global properties of the mixed flow. For mixed states with

finite components v+
2 and v−2 the azimuthal mean flow Φ and fTW are approximately

proportional to each other.

4.3. Small Prandtl numbers: Pr→ 0

When Pr� 1 the axisymmetric basic flow first becomes unstable to three-dimensional
stationary modes, before a secondary instability leads to oscillatory flow. The purpose
of this section is to investigate the secondary instability and its mechanism. All
numerical results reported in § 4.3 are for simulations with Γ = 1, Gr = Bi = 0.
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4.3.1. Three-dimensional stationary flow

In the case Pr = 0 the temperature field is purely conductive, i.e. axisymmetric
and time-independent. It provides the axial thermocapillary forcing of the flow but
decouples from u. Hence, the instabilities must be due to inertial effects. This is
confirmed by the energy transfer analysis of Wanschura et al. (1995). Their linear
stability analysis of the two-dimensional basic flow with the above parameters gives
Rec = 1793 and mc = 2. With increasing Pr azimuthal Marangoni forces counteract-
ing the surface flow of the critical three-dimensional mode stabilize the basic flow
(Levenstam & Amberg 1995). An extrapolation of the growth rate σ(Re) found in the
simulations for Pr = 0.02 yields Resim

c = 2108, which is 2.5% above the linear stability
analysis value Rec = 2062. Increasing Re, the amplitudes of the fundamental mode
and its harmonics grow according to (4.1), i.e. the instability is also supercritical. For
the coefficients given in table 3, Rec = 2108 and the amplitudes at Re = 2200 and
2400 were used.

4.3.2. Three-dimensional oscillatory flow

If the Reynolds number is increased further, a secondary instability leads to
oscillatory flow. Since the stationary basic flow is not homogeneous in ϕ, the pertur-
bation eigenmode may be represented by a series of coupled Fourier modes. From
the linearized perturbation equations for a stationary base state with fundamental
wavenumber m0 > 0 it is easy to show that the system of Fourier modes decouples
into m0 independent sets of equations, within each of which the Fourier modes are
separated by m0:

Sl = {m|m = l + µm0, µ ∈ IN}, l = 0, 1, . . . m0 − 1. (4.13)

In the present case we have m0 = mc = 2. Therefore two types of oscillatory
perturbation modes exist. In general both neutral oscillatory modes have different
critical Reynolds numbers. One mode consists of harmonics with odd wavenumbers
(m = 1, 3, 5, . . .), the other one has even wavenumbers (m = 0, 2, 4, . . .) only.

In the present simulations the former type, composed of odd Fourier modes, is
realized. Figure 13 shows the spectral decomposition of the time-dependent flow for
Re = 6000 (slightly above the onset of oscillations) and for Re = 7200. The compo-
nents with n = 0 constitute the stationary base flow. It consists of the fundamental
mode with m = 2 and its spatial harmonics. The components with n = ±1 and odd
wavenumbers m represent the time-dependent perturbation. Close to the onset of
the oscillations, the variation is almost harmonic in time. If the Reynolds number is
increased, contributions with n = ±2,±3 . . . appear, making the oscillations increas-
ingly anharmonic. In the (m, n)-plane, the non-zero components are arranged in a
checkerboard manner. The components with frequencies n and −n were observed to
approach equal amplitudes in the asymptotic state, i.e. the perturbation is a stable
standing wave. Close to the critical threshold, where the higher temporal harmonics
(|n| > 1) are small compared to the components with n = ±1, the squared amplitudes
of the latter grow proportional to ε = Re/Rec2 − 1,(

v±1
m

)2 ∝ ε, m = 1, 3, . . . ,

i.e. the bifurcation is supercritical. The critical Reynolds numbers for the secondary
instability were obtained by extrapolating the squared oscillation amplitude to zero.
We find Rec2 = 5960, ωc2 = 80 for Pr = 0 and Rec2 = 7160, ωc2 = 93 for Pr = 0.02.

The value of Rec2 for Pr = 0 is nearly identical with that given by Levenstam
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Figure 13. Spectral composition of the flow computed from v(t) at (r, z)=(0.7,−0.2) for Re=6000
(a) and Re = 7200 (b). The peak amplitudes correspond to v0

2 = 22.0 and 27.4, respectively.

& Amberg (1995). Our simulations confirm their description of the oscillatory flow
and also that the same type of instability occurs for Pr = 0 and Pr = O(10−2),
indicating that the mechanism is independent of the temperature field. In view of
this the following detailed analysis of the three-dimensional time-dependent flows is
restricted to the zero-Prandtl-number limit.

4.3.3. Energy transfer analysis

To elucidate the mechanism of the instability the energy transfer between the
stationary basic flow and the perturbation flow is analysed. For this purpose we write
the total flow u as a sum of the stationary base flow u0 and the time-dependent
perturbation u1,

u(r, t) = u0(r) + u1(r, t).

Inserting u into the Navier–Stokes equations, linearizing with respect to u1, multiplying
by u1 and integrating over the fluid volume yields the Reynolds–Orr equation for the
perturbation which, for our boundary conditions, reads

∂tEkin =

∫
u1 · (∇2u1) dV −

∫
u1 · (u1 · ∇u0) dV = −D +

9∑
i=0

Ii, (4.14)

where D is the rate of dissipation and the integrals Ii (i = 0, 1, . . . 9) denote the work
per unit time done by the Reynolds stresses on the base flow. The work done by
azimuthal and axial Marangoni forces vanishes for Pr→ 0.

The stationary base flow u0 was computed by averaging N (usually N = 16) flow
fields sampled at equally spaced time intervals ∆t = τ/N. An evaluation of the
integrals in the Reynolds–Orr equation for one complete period of the oscillations
is shown in figure 14. There are four terms that provide the main energy for the
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Figure 14. Most relevant integrals in the Reynolds–Orr equation as a function of time for Re = 6000.
All terms are normalized with respect to the maximum of |D|. −D (—), I1 (�), I2 (+), I5 (×),
I7 (�), I9 (- - -). The contribution of the integrals not shown is less than that indicated by I9.

perturbation flow, namely

I1 = −
∫
u2

1∂ru0 dV , I7 = −
∫
w1u1∂rw0 dV , (4.15)

I2 = −
∫
u1v1

r
∂ϕu0 dV , I5 = −

∫
v2

1

r
∂ϕv0 dV . (4.16)

All Reynolds-stress terms have also been analysed locally to exclude the cases where
large contributions in one part of the volume are compensated by large contributions
with opposite sign in other parts, which would result in small but nevertheless
important integrals. It turns out that integrals other than the above have minor
contributions throughout the fluid volume.

The perturbation flow gains its energy alternatingly from azimuthal base-state
velocity gradients (I2, I5) and from radial base-state gradients (I1, I7). The integral
maxima of the latter two terms are delayed by ∆t ≈ 0.15 τ with respect to those of
the former two. Figure 15 shows the local distribution of their integrands, weighted
with the corresponding control volume size dV . Note that the term I7 also provides
the energy for the first (stationary) instability (Wanschura et al. 1995).

4.3.4. Time evolution of the perturbation flow

Horizontal cuts of the perturbation flow indicate that it is localized near the vertical
plane along ϕ = 0, π (figure 16a). For the visualization of the vortical structures in the
oscillatory flow we employ the method of Jeong & Hussain (1995) who considered
the tensor Π = S2 + Q2, where Sij = 1

2
(∂iuj + ∂jui) and Qij = 1

2
(∂iuj − ∂jui) are the

symmetric and the anti-symmetric part of the velocity-gradient tensor, respectively.
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Figure 15. Local distribution of the terms I1 (a), I7 (b), I2 (c) and I5 (d) in the plane ϕ = −π/26 for
Re = 6000. All terms are shown for the time when they attain their maximum integral contribution
(cf. figure 14).

The tensor Π approximately corresponds to −∇∇p but does not contain transient
and viscous effects. If the eigenvalues are ordered such that ζ1 6 ζ2 6 ζ3, the vortex
core is identified as the region in which Π has two negative eigenvalues ζi, i.e. where
ζ2 < 0. By this method, structures of weak vorticity can also be clearly visualized.

The vortex structures in the perturbation flow are illustrated in figure 17 by a
sequence of isoline-plots of ζ2 during half a period of the oscillations. The struc-
tures correspond to cigar-like regions of nearly axial vorticity, as can be seen from
figure 16(b).

In figure 17(a) two fully developed vortex pairs 1 and 2 are seen. As time proceeds
both inner vortices (pair 1) are annihilated and are replaced by the two fragments 2a
that split from the outer pair (b). During the temporary increase of vorticity of the
new inner pair (c, d), the remainders 2b and 2c disappear and a new vortex pair 3 is
generated closely above them (c). This new pair has opposite vorticity to the former
pair 2 and the fragments 3b will take its role in the second half of the oscillation
period.
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Figure 16. Horizontal cuts of the perturbation flow at z = −0.15 for t/τ = 7
16

(Re = 6000, Pr = 0).
(a) Velocity field, (b) isolines of ζ2. The instant corresponds to figure 17(b).

Depending on the phase of the oscillation and the respective position of a vortex
pair, its vortices are driven alternatingly by the two mechanisms associated with I1,7

and I2,5 before annihilation near r = 0. Comparing figures 14 and 17 shows that the
process associated with the integrals I2 and I5 drives both the inner and the outer
vortices around t/τ ≈ 1

4
. When the vorticity of the inner pair is decaying, the outer

pair is driven by the energy from I1 and I7. During phases of maximum energy supply
from these terms, two fragments split from the outer pair and replace the inner two
vortices.

4.3.5. Mechanism of the secondary instability

While there is no obvious reason for the oscillatory nature of the supercritical flow,
the vortical structures that appear can, at least, be compared with those known for
much simpler geometries and base flows. To draw this parallel, we note that with
increasing Reynolds number the saddle-shaped steady three-dimensional basic toroid
is stretched out when its core is displaced radially outward at the two opposite sides
(ϕ = 0 and ϕ = π in the figures shown) and pulled into the cold (bottom) corner,
while at π/2 relative to these (ϕ = π/2 and ϕ = 3π/2) it is shifted towards the hot
(upper) boundary and towards the cylinder’s axis of symmetry. In this qualitative
description the location of the vortex is identified as the point (r(ϕ), z(ϕ)) where
u(r, z) = w(r, z) = 0. This is illustrated in figure 18(c, d).

During this process the cold boundary stagnation point near (r, z) = (0,−0.5)
present for axisymmetric flow develops into a so-called unstable node at z = −0.25
on the cylinder’s axis. Parts of the fluid approaching this point from ϕ = π/2 and
3π/2 form an upward-directed straining flow, but others are pushed radially outwards
at ϕ = 0 and π, as can be seen in the horizontal cut of figure 18(a, b). The strong
deflection of the latter parts generates the large azimuthal gradients which are the
source of the energy production mechanism represented by the integrals (4.16), I2 and
I5. When meeting with the backflow of the thermocapillary vortex near r = 0.6 the
outward streams give rise to two more regions of straining flow (figures 18a and 18c),
where large radial gradients favour the energy production by the integrals (4.15), I1

and I7. Initially inclined (vortices 3b in figure 17 d ), the vortices generated hereby are
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Figure 17. Time evolution of the vortex structures of the perturbation at Re = 6000 in the plane
ϕ = 0, π. Isolines of ζ2 are shown for (a) t/τ = 1

4
, (b) 7

16
, (c) 9

16
, and (d) 10

16
(τ: period of oscillation).

Neighbouring vortices have opposite vorticity as indicated in (a). Isolines below ζmin = −100 are
not shown, causing the plateaus inside strong vortices.
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Figure 18. Stationary base flow for Re = 6000 projected onto the planes (a) z = −0.30,
(b) z = 0.10, (c) ϕ = 0, (d) ϕ = π/2.

aligned upward along the direction of the central straining flow of the basic state
during their evolution (vortices 1 and 2a in figure 17a–c).

Most hyperbolic stagnation point flows are unstable (Lagnado, Phan-Thien & Leal
1984; Kerr & Dold 1994). The unstable modes typically consist of vortices with
vorticity aligned in the principle strain direction amplified by vortex stretching. Since
the regions of energy production identified above for the half-zone have stagnation
point flow character and since the straining motion associated herewith obviously
enforces an alignment of the perturbation vorticity, we conclude that the instability
is due to the same mechanism (compare figures 17 and 18c, d).

The secondary structures in the linear flows studied by Kerr & Dold (1994) are
steady. In the present case the secondary flow is oscillatory, which may be related to
the lack of translational invariance perpendicular to the respective planes of main
strain, but also to the coupling of the two regions where vortices are generated with the
central straining flow. Note that the locations of the inner vortices are approximately
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(r ≈ 0.2, ϕ = 0, π). It is essentially their strength, and not their position, that oscillates
in time.

5. Discussion and conclusions
Thermocapillary flows in differentially heated cylindrical liquid bridges for both

small (0 and 0.02) and large Prandtl numbers (4 and 7) have been investigated. Results
from linear stability analyses were confirmed throughout. Simulations above the
stability limit of the axisymmetric stationary basic state were used to investigate typical
nonlinear properties of these flows, e.g. interactions of propagating hydrothermal
waves (stability of SWs, mean flow, time-dependent heat transfer), and the instability
of the three-dimensional stationary flow in low-Prandtl-number fluids.

5.1. Large Prandtl numbers

For fluids with Pr = O(1) the two-dimensional axisymmetric basic flow becomes
unstable to hydrothermal waves. Using appropriate initial conditions, standing waves,
i.e. flows with counter-propagating waves of equal amplitude, can be generated in-
itially. For all parameters investigated mixed waves, however, are found to be unstable
and the asymptotic state is a pure travelling wave containing only components which
propagate in the same direction. This is consistent with the observations of Preisser et
al. (1983) for a fluid of Pr = 8.9. For zones with fluids of Pr = 1 and Pr = 7 heated
from above Velten et al. (1991) also identified azimuthally travelling waves for most
of the parameters investigated.

Standing and travelling waves (Pr = 30 and 74, Γ = 2 and 3, m = 1) also have been
observed by Savino & Monti (1996). They found standing waves to appear during a
time interval right after the onset of oscillatory flow. The successive evolution into
a travelling wave was attributed to the large amplitudes of the perturbation, which
continued to grow during the standing wave state in their calculations. This is different
to our findings, where travelling waves are the asymptotic states for all investigated
values of ε, i.e. even for small-amplitude perturbations. For ε → 0, however, the
decay of the standing wave is critically slowed down, as is seen from σ1 in (4.11), and
requires asymptotically long simulation runs to be detected.

We anticipate that this critical slowing down is also responsible for an untypical
case reported by Castagnolo & Carotenuto (1999) for a unit-aspect-ratio liquid bridge
and Pr = 1. In a simulation with Re only ≈ 0.5% above Rec the authors were not
able to observe the decay of the standing wave prior to the end of the calculation
at t ≈ 50. However, as can be seen from their figure 5 (a), the oscillation amplitude
of the temperature signal was still increasing, indicating that the asymptotic state
has not been reached yet. The asymptotic states found in runs with higher Re or for
Pr = 32 (aspect ratio 1 and 2) were travelling waves.

Nonlinear equilibrium states of obliquely travelling waves in thin liquid layers with
a temperature gradient imposed on the free surface have been studied by Smith
(1988). By a multiple scales analysis he derived a set of generalized Ginzburg–Landau
equations for the coupled waves which is similar to (A 1)–(A 2) but includes slow
spatial amplitude variations. For a thermally insulated free surface travelling waves
are stable for all Prandtl numbers, while for Bi = 1 and Pr 6 0.01 standing waves are
stable. This is in full analogy with our present results for Pr = 4 and Bi = 0.

The travelling waves studied for Pr = 4 and 7 exhibit a finite azimuthal mean
flow opposite to the direction of wave propagation. Presumably, this is the cause of
the azimuthal transport of tracer particles in a NaNO3 (Pr = 7) float-zone of aspect
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ratio Γ = 0.25 reported recently by Schwabe, Hintz & Frank (1996). For Re ≈ 2Rec

they observed groups of tracer particles, which were trapped in the centre of the
thermocapillary vortex, moving azimuthally back and forth in an asymmetric manner,
such that there was a net movement of the particles in the direction of propagation of
the travelling wave. This, however, does not contradict our result of the net flow being
opposite to the wave propagation. For large Prandtl numbers and small aspect ratio Γ
the centre of the thermocapillary vortex may well be in the region of co-propagation
of the azimuthal flow (cf. the lower right in figure 9b). In fact this is found to be the
case for Γ = 0.5, the smallest aspect ratio investigated in our simulations for Pr = 7.
The mean flow velocity at the vortex centre for Re = 2100 ≈ 1.75Rec is ≈ 1◦ s−1 (for
NaNO3), in qualitative agreement with the experimental value of ≈ 1.5◦ s−1 (figure 10
in Schwabe et al. 1996).

In general, the wave fronts ϕwf± (r, z) of the waves, i.e. the surfaces of constant phase
Φ± = ±mϕ− ωt+ α(r, z) = const., are not planar. At a given location (r, ϕ, z) this is
equivalent to a wave propagating with a local wave vector

k± = ∇Φ± =

(
∂α

∂r
,±m

r
,
∂α

∂z

)T

.

For a standing wave, in particular, only the radial and axial wave-vector components
remain (Kuhlmann & Rath 1993).

In the cases investigated (Pr = 4 and Pr = 7) we do not find a strong corkscrew-like
twisting of the wave fronts at r = 1/Γ , as was reported by Muehlner et al. (1997) for
an experiment with a fluid of Pr = 35. Close to Rec the wave fronts of the component
with m = mc are dominating the supercritical flow. For example, in the case of Pr = 4
and ε = 0.46 the temperature wave front’s head and tail on the cylinder’s surface have
a phase difference ∆ϕwf±2;s = 9◦, whereas the maximum phase difference in the plane

(r, z) is ∆ϕwf±2;max = 70◦. In the case of Pr = 7, ε = 0.51, the corresponding values are

∆ϕwf±2;s = 11◦ and ∆ϕwf±2;max = 121◦. Hence, at least near the outer surface, the twist of
the wave fronts is weak. Muehlner et al. (1997) observed a uni-directional tilting of
the wave front on the surface with kz = ∂zα > 0, i.e. the waves seem to travel upstream
with respect to the basic surface flow (as do the hydrothermal waves investigated by
Smith 1988). For the cited simulations this also holds true near z = 0, whereas close
to the rigid walls intervals with kz < 0 also exist. Hydrothermal waves in an infinite
liquid column subject to an axial surface temperature gradient have been studied by
Xu & Davis (1984). They find that for O(1) Prandtl numbers the critical mode has
m = 1 and travels downstream.

The wavenumber m selected in the weakly nonlinear regime is proportional to the
inverse of the aspect ratio Γ of the system. This is consistent with the observations
of Preisser et al. (1983) and Velten et al. (1990) (see also Kuhlmann 1999) and the
linear-stability analysis of Wanschura et al. (1995) for Pr� 1.

5.2. Small Prandtl numbers

For fluids with Pr� 1 the two-dimensional axisymmetric flow first becomes unstable
to a three-dimensional stationary perturbation. On increasing the Reynolds number
a secondary instability leads to an oscillatory flow in form of a stable standing wave.
The critical mode has odd spectral content (Fourier modes with m = 1, 3, 5, . . .).
Its temporal harmonics oscillating at |n|ω (|n| > 1) alternatingly have even and
odd spectral content, leading to a checkerboard-like structure in the (m, n)-plane of
figure 13.
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Since m = 2 for the stationary three-dimensional basic flow, there also exists a
perturbation mode which, close to its corresponding threshold, consists of components
with even wavenumbers only. The instability is of odd type, i.e. spatially subharmonic
to the driving basic flow with mc = 2. (This is similar to the subharmonic resonance
found in other nonlinear forced systems, e.g. the Mathieu oscillator.) Hence we
conclude that the even-wavenumber eigenmode must have a growth rate smaller than
that of the odd-wavenumber mode for the parameters investigated.

We confirm the results of Wanschura et al. (1995) (regarding the first instability)
and Levenstam & Amberg (1995) that the instabilities are inertial for Pr = 0 and for
small non-zero Prandtl numbers. The energy transfer analysis shows that the energy
for the time-dependent perturbation flow is generated in the bulk rather than on
the surface. The relevant terms involve radial and azimuthal gradients of the three-
dimensional stationary base flow. A characteristic feature of the perturbation flow
is the alternating growth and decay of two pairs of nearly straight, counter-rotating
vortices. Their axes are oriented parallel to the main axis (ez) of the straining flow
generated by the three-dimensional base flow near r = 0. The similarities with linear
stagnation point flows suggests that the vortex stretching in this region is the origin
of the instability and that the observed orientation is caused by vorticity alignment
in the straining flow.

Critical Reynolds numbers for full-zone configurations under normal gravity have
been calculated by Kaiser & Benz (1998). Even though Bd = 0.5, they find that
thermocapillary convection is dominating. For cylindrical zones with Γ = 1.5 they
obtain 3500 < Rec2 < 4500. This is consistent with our results, if we assume that
the increased dissipation in a half-zone owing to the hot rigid boundary must be
compensated by a larger driving. The critical Reynolds number for the onset of
oscillatory flow was determined experimentally by Cröll et al. (1991). They used a
heated zone with partially covered surface and found Rec2 = 7000± 2000.

These results support the relevance of the half-zone system for the modelling of
flows in full floating zones. We note, however, that for real floating zone configurations
Γ is such that for the first (stationary) instability mc = 1 is expected, eventually
modifying details of the secondary instability’s mechanism. At least, we may conclude
from § 4.3.2 that the oscillatory mode includes all wavenumbers (m = 0, 1, 2, . . .).

We are very grateful to M. Wanschura for providing the linear stability data. This
work was partially supported by DLR under grant number 50 WM 9443.

Appendix. Amplitude equations for travelling waves

We consider the travelling wave instability of a stationary base state that is
translation-invariant in the spatial dimension denoted by x. Close to the onset the
spatially periodic perturbation can be written in terms of the left- and right-travelling
waves,

A(x, t) = AL(x, t)ei(kx+ωt) + AR(x, t)ei(kx−ωt) + c.c.

For the slow temporal and spatial modulation of AL and AR two coupled complex
Ginzburg–Landau (CGL) equations hold, which in the general form are (Cross 1988)

τ0(∂t + v∂x)AR = ε(1 + ic0)AR + (1 + ic1)ξ
2
0∂

2
xAR

−gs(1 + ic2)|AR|2AR − gc(1 + ic3)|AL|2AR, (A 1)
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τ0(∂t − v∂x)AL = ε(1 + ic0)AL + (1 + ic1)ξ
2
0∂

2
xAL

−gs(1 + ic2)|AL|2AL − gc(1 + ic3)|AR|2AL. (A 2)

Here, i denotes the imaginary unit, i =
√−1, v is the group velocity and τ0, ξ0,

gs, gc, and cj (j = 0, 1, 2, 3) are real coefficients. In the case of the hydrothermal
wave instability in a cylindrical liquid bridge the coordinate x corresponds to rϕ
and the corresponding wavenumber k equals m/r. For Γ = O(1) the system admits
small integer wavenumbers m only and slightly above the critical Reynolds number
only m = mc and its harmonics are present. Consequently there is no slow spatial
modulation of the amplitude,

AL(ϕ, t) ≡ AL(t) = L(t)eiαL(t),

AR(ϕ, t) ≡ AR(t) = R(t)eiαR(t).

Insertion into the CGL equations and separating real and imaginary parts, we obtain
the four coupled differential equations (4.7)–(4.10).

The coefficient τ0 is determined from the exponential growth rate σ when the
amplitude of the perturbation flow is far from its saturated value. Then only terms
linear in L and R need to be considered, which gives

L(t), R(t) ∝ eεt/τ0 .

Thus, τ0 = ε/σ. The value of τ0 given in table 4 was computed by a linear least-squares
fit of σ(ε).

For a standing wave with saturated amplitude, i.e. L = R and L̇ = Ṙ = 0. We
obtain

L2 = R2 =
ε

gs + gc

7→ ε

1 + g̃c

, (A 3)

τ0α̇L = τ0α̇R =

(
c0 − c2 + c3gc/gs

1 + gc/gs

)
ε 7→

(
c0 − c2 + c3g̃c

1 + g̃c

)
ε, (A 4)

where the right-hand-side expressions result from rescaling the amplitudes according
to L2/gs 7→ L2 and R2/gs 7→ R2. Then gs and gc in (4.7)–(4.10) are replaced by
1 and g̃c = gc/gs, respectively. For an asymptotic, say, pure left-travelling wave
R = Ṙ = L̇ = 0 and

L2 =
ε

gs

7→ ε, (A 5)

τ0α̇L = (c0 − c2)ε (A 6)

The values for gs and gc were derived as the linear coefficients from least-squares
fits of the squared amplitudes of saturated standing and asymptotic travelling waves
v2

2,SW(ε) and v2
2,TW(ε) as a quadratic function of ε. The quadratic term was retained

to account for a weak curvature of the data. The frequency shift observed for initial
and saturated standing as well as travelling waves (§ 4.1.4) is caused by α̇. If the wave
amplitudes are of O(ε), the terms ∝ L2, R2 in (4.8) and (4.10) can be omitted and c0

is obtained from

τ0α̇L,R = c0ε.

Finally, c2 and c3 are calculated from (A 4) and (A 6). We computed c0, c2, and c3

from linear least-squares fits of the appropriate oscillation frequencies as a function
of ε.
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